meerkat.interactive.app.src.lib.component.core.ImageAnnotator
meerkat.interactive.app.src.lib.component.core.ImageAnnotator¶
- class ImageAnnotator(data, *, categories=None, segmentations=None, points=None, boxes=None, opacity: float = 0.85, selected_category: str = '', on_add_category: meerkat.interactive.endpoint.EndpointProperty[meerkat.interactive.app.src.lib.component.core.image_annotator.AddCategoryInterface] = None, on_add_box: meerkat.interactive.endpoint.EndpointProperty[meerkat.interactive.app.src.lib.component.core.image_annotator.AddBoxInterface] = None, on_add_point: meerkat.interactive.endpoint.EndpointProperty[meerkat.interactive.app.src.lib.component.core.image_annotator.AddPointInterface] = None)[source]¶
- __init__(data, *, categories=None, segmentations=None, points=None, boxes=None, opacity: float = 0.85, selected_category: str = '', on_add_category: Optional[meerkat.interactive.endpoint.EndpointProperty[meerkat.interactive.app.src.lib.component.core.image_annotator.AddCategoryInterface]] = None, on_add_box: Optional[meerkat.interactive.endpoint.EndpointProperty[meerkat.interactive.app.src.lib.component.core.image_annotator.AddBoxInterface]] = None, on_add_point: Optional[meerkat.interactive.endpoint.EndpointProperty[meerkat.interactive.app.src.lib.component.core.image_annotator.AddPointInterface]] = None)[source]¶
- Parameters
data – The base image. Strings must be base64 encoded or a filepath to the image.
categories – The categories in the image. These categories will be used for all annotations. Can either be a list of category names, a dictionary mapping category names to colors, or a DataFrame with two columns (“name” and “color”).
segmentations – A list of (mask, category) tuples.
opacity – The initial opacity of the segmentation masks.
on_select – An endpoint to call when the user clicks on the image.
Methods
__init__
(data, *[, categories, ...])- param data
The base image.
append
(other)clear_annotations
([annotation_type])construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(*[, include, exclude, update, deep])Duplicate a model, optionally choose which fields to include, exclude and change.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
from_id
(id)from_orm
(obj)get_components
()json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])prepare_categories
(categories)prepare_data
(data)prepend_meerkat_id_prefix
(id)schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
(value)Attributes
alias
component_name
event_names
events
frontend
Returns a Pydantic model that can be should be sent to the frontend.
frontend_alias
id
identifiable_group
library
namespace
path
prop_bindings
prop_names
props
slots
slottable
virtual_props
Props, and all events (as_*) as props.
wrapper_import_style
data
categories
segmentations
points
boxes
opacity
selected_category
on_add_category
on_add_box
on_add_point